1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
* This file is part of laurelin_client
* Copyright (C) 2023 Jonni Liljamo <jonni@liljamo.com>
*
* Licensed under GPL-3.0-only.
* See LICENSE for licensing information.
*/
use std::collections::HashMap;
use fastrand::Rng;
use crate::{
api::game::{Command, Game},
game_status::SupplyPile,
};
use super::{GameStatus, PlayerState, PlayerStatus};
/// funny unsafe wrapper
fn get_invoker_target<'a, K, V>(
players: &'a mut HashMap<K, V>,
invoker: &K,
target: &K,
) -> (&'a mut V, &'a mut V)
where
K: Eq + std::hash::Hash,
{
unsafe {
// NOTE: soo... I don't really know the consequences of possibly
// having two mutable references to the same value, but I guess
// I'll find out!
// in many instances where people wanted multiple mutable references
// to Vec or HashMap values, they only gave one in wrappers like this,
// if the wanted values were the same.
// e.g. returning (V, None), if the keys were the same.
let invoker_ref = players.get_mut(invoker).unwrap() as *mut _;
let target_ref = players.get_mut(target).unwrap() as *mut _;
(&mut *invoker_ref, &mut *target_ref)
}
}
pub fn parse(game: &Game) -> Result<GameStatus, ()> {
let mut game_status = GameStatus {
actions: game.actions.as_ref().unwrap().to_vec(),
supply_piles: vec![],
players: HashMap::new(),
};
game_status.players.insert(
game.host_id.clone(),
PlayerStatus {
state: PlayerState::Idle,
currency: 0,
vp: 2,
hand: vec![],
deck: vec![],
discard: vec![],
},
);
game_status.players.insert(
game.guest_id.clone(),
PlayerStatus {
state: PlayerState::Idle,
currency: 0,
vp: 2,
hand: vec![],
deck: vec![],
discard: vec![],
},
);
// TODO: a system for reparsing if needed, e.g. after something
// modifies the actions Vector.
for action in &game_status.actions {
// invoker: the one who invoked the action
// target: the one who the action affects, may also be the invoker, e.g. draw
let (invoker, target) =
get_invoker_target(&mut game_status.players, &action.invoker, &action.target);
match &action.command {
Command::InitSupplyPile { card, amount } => {
let pile = SupplyPile {
card: card.clone(),
amount: *amount,
};
game_status.supply_piles.push(pile);
}
Command::TakeFromPile { index, for_cost } => {
// index should be within range
assert!(*index <= game_status.supply_piles.len());
let pile = &mut game_status
.supply_piles
.get_mut(*index)
.unwrap_or_else(|| unreachable!());
// pile should not be empty
assert!(pile.amount > 0);
pile.amount -= 1;
// player should have enough
assert!(*for_cost <= target.currency);
target.currency -= for_cost;
target.discard.push(pile.card.clone());
}
Command::Draw { amount } => {
for _ in 0..*amount {
if target.deck.is_empty() {
shuffle_discard_to_deck(target, action.seed.parse::<u64>().unwrap());
}
target
.hand
.push(target.deck.pop().unwrap_or_else(|| unreachable!()));
}
}
Command::Discard { index } => {
// index should be within range
assert!(*index <= target.hand.len());
target.discard.push(target.hand.remove(*index));
}
Command::EndTurn {} => {
// NOTE: target will be the next player
// set player to idle
invoker.state = PlayerState::Idle;
// set the target to action phase
target.state = PlayerState::ActionPhase;
// clear currency
invoker.currency = 0;
// other?
}
Command::ChangePlayerState { state } => {
target.state = *state;
}
_ => todo!(),
}
}
Ok(game_status)
}
fn shuffle_discard_to_deck(target: &mut PlayerStatus, seed: u64) {
let cards = target.discard.to_vec();
target.discard.clear();
target.deck = cards;
let rng = Rng::with_seed(seed);
rng.shuffle(&mut target.deck);
}